Nonlinear Structural Behaviour Identification using Digital Recurrent Neural Networks

نویسندگان

  • Vesna RANKOVIĆ
  • Nenad GRUJOVIĆ
  • Dejan DIVAC
  • Nikola MILIVOJEVIĆ
  • Radovan SLAVKOVIĆ
چکیده

Primljeno (Received): 2011-10-10 Prihvaćeno (Accepted): 2011-12-21 Original scientific paper Dynamical systems contain nonlinear relations which are difficult to model with conventional techniques. Hence, efficient nonlinear models are needed for system analysis, optimization, simulation and diagnosis of nonlinear systems. In recent years, computational-intelligence techniques such as neural networks, fuzzy logic and combined neuro-fuzzy systems algorithms have become very effective tools in the field of structural identification. The problem of the identification consists of choosing an identification model and adjusting the parameters in an way that the response of the model approximates the response of the real system to the same input. This paper investigates the identification of a nonlinear system by Digital Recurrent Neural Network (DRNN). A dynamic backpropagation algorithm is employed to adapt weights and biases of the DRNN. Mathematical model based on experimental data is developed. Results of simulations show that the application of the DRN for the identification of complex nonlinear structural behaviour gives satisfactory results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Nonlinear Models with Feedforward Neural Network and Digital Recurrent Network

Nonlinear system identification via Feedforward Neural Networks (FNN) and Digital Recurrent Network (DRN) is studied in this paper. The standard backpropagation algorithm is used to train the FNN. A dynamic backpropagation algorithm is employed to adapt weights and biases of the DRN. The neural networks are trained using the identified error between the model’s output and plant’s output. Result...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Adaptive control of discrete-time nonlinear systems using recurrent neural networks - Control Theory and Applications, IEE Proceedings-

A learning and adaptive control scheme for a general class of unknown MIMO discretetime nonlinear systems using multilayered recurrent neural networks (MRNNs) is presented. A novel MRNN structure is proposed to approximate the unknown nonlinear input-output relationship, using a dynamic back propagation (DBP) learning algorithm. Based on the dynamic neural model, an extension of the concept of ...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014